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Abstract
The hepatocyte growth factor (HGF) and its tyrosine kinase receptor cMET (MET proto-oncogene) entered 
into the spotlight mainly as a bypassing pathway for other targeted therapies (e.g., therapies targeting epider-
mal growth factor receptor). However, the HGF–cMET signaling axis can be oncogenic by itself. Aberrations 
in HGF–cMET occur in many cancer types, such as non-small-cell lung cancer, pancreatic cancer, and renal 
carcinoma. This resulted in the development of several inhibitors targeting this signaling axis. Biomarkers for 
these targeted therapies include cMET amplification and cMET exon 14 skipping. Activation of cMET by HGF 
results in the activation of several downstream pathways, among which are the mitogen-activated protein 
kinase cascade and phosphatidylinositol-3-kinase-Akt signaling. During embryogenesis, they control the de-
velopment of tubules and are involved in the migration and invasion of several cell types. These functions are 
mirrored in cancer growth, whereby cMET is a known activator of cell migration and metastasis. Therefore, 
in this chapter, we start by describing the road to discovery, the functions in development, and explain the 
HGF–cMET signaling in detail. Next we focus on HGF–cMET in cancer, describing the possible aberrations 
and providing an overview of inhibitors (under development). Finally, we pay attention to the role of HGF–
cMET as a resistance mechanism against other (targeted) therapies.
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2.1 DISCOVERY AND STRUCTURE OF HEPATOCYTE  
GROWTH FACTOR

The first report of hepatocyte growth factor (HGF) dated back to 1984. Almost simulta-
neously, two articles described the isolation of a new growth factor in rats, named HGF or 
hepatotropin [1,2]. This growth factor was isolated from serum and enhanced DNA synthesis 
and mitogenesis in hepatocytes [1,2]. Platelet-derived serum showed only 50% activity when 
compared to serum from whole blood. The addition of platelet lysates restored this decreased 

ABBREVIATIONS

ADAM A disintegrin and metalloproteinase
BMP-2 Bone morphogenetic protein-2
ccRCC clear cell renal cell cancer
CDA Cytidine deaminase
CRC Colorectal cancer
CSC Cancer stem cell
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
ERK Extracellular signal-regulated kinase
ERM Ezrin, radixin, moesin protein family
FAK Focal adhesion kinase
FGF Fibroblast growth factor
Gab1 Grb2-associated binding protein 1
GGA3 Golgi-localized gamma-ear containing Arf-binding protein 3
Grb2 Growth factor receptor bound protein 2
GSK3ß Glycogen synthase kinase 3 beta
HGF Hepatocyte growth factor
iNOS inducible NOS
JNK C-Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MET Tyrosine-protein kinase Met
MKK1 Mitogen-activated protein kinase kinase 1
MSP Macrophage-stimulating protein
mTOR mammalian target of rapamycin
NF-kB Nuclear factor-kB
NK N-terminal and kringle
NSCLC  Non-small cell lung cancer
PDAC Pancreatic ductal adenocarcinoma
PI3K  Phosphoinositide 3 kinase
PKC Protein kinase C
pRCC  papillary renal cell cancer
PSC Pancreatic stellate cells
RCC  Renal cell carcinoma
SF  Scatter factor
SFR  Scatter factor receptor
SHC Src homology 2 domain containing
Shp2  Protein-tyrosine phosphatase 2C
STAT3 Signal transducer and activator of transcription 3
TKI  Tyrosine kinase inhibitor
VEGF Vascular endothelial growth factor
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activity, suggesting an interaction with platelets [2]. The other article showed that HGF dis-
played high affinity for heparin, suggesting association with platelets, but they were not able to 
confirm this [1]. Reduction of the disulfide bonds inactivated HGF, as well as heat and increased 
acidity. In 1988, human HGF was isolated for the first time. Purification from plasma of a patient 
with fulminant hepatic failure resulted in a protein of 76–91 kDa, which consisted of two chains 
of 31–34 and 54–65 kDa, respectively [3]. HGF was shown to activate the cMET receptor [4].

In 1973, a scatter factor (SF) that promotes cell migration and overgrowth in SV40-transformed 
cells was described in Balb/c3T3 cells [5]. This factor was later shown to be produced by embry-
onic fibroblasts and stimulated migration in epithelial cells only, suggesting a paracrine effect. 
This SF affected locomotion in cell colonies, whereas in single cells it only leads to membrane 
ruffling [6]. Further research into these effects showed that cancer cell lines neither produce nor 
respond to this factor [7]. Purification of the SF succeeded in 1989. The purified factor retained all 
the previously described features of the fraction, isolated from a conditioned medium. This SF 
increased motility and modulated morphology. It inhibits junction formation of single epithelial 
cells and promotes cell scattering in epithelial cell sheets, without influencing cell growth [8]. 
The SF receptor was identified as the product of the cMET proto-oncogene [9].

Further study of both factors led to the conclusion that HGF and SF are one and the same 
growth factor [10]. Both factors were mapped onto the same chromosomal region (7q11.2-
21), and their protein sequence was indistinguishable. Moreover, SF was able to promote 
hepatocyte growth, whereas HGF showed SF activity [10,11]. Both SF and HGF were shown 
to bind the cMET β-chain with high affinity and heparansulfate proteoglycans with low 
affinity. Cell responses to HGF were also shown to be mediated by cMET activation [12].

The HGF gene was mapped to chromosome 7 at the 7q21.1 position [13]. The gene contains 
18 exons and spans over 70 kbp [14]. Exon 1 encodes a signal sequence and the 5′-UTR. The 
α-chain is encoded by exons 2–11, exon 12 results in a spacer sequence, and the β-chain is 
encoded by exons 13–18. HGF is translated as a single-chain 83 kDa protein: pre-pro-HGF. In 
the first step, the signal sequence is removed, resulting in pro-HGF. In the second step, pro-
HGF is cleaved between Arg494 and Val495, resulting in a 69 kDa α- and 34 kDa β-chain that 
are connected by disulfide bonds [15].

HGF is part of the plasminogen-related growth factor family, together with HGF-like/
macrophage-stimulating protein (HGF1/MSP). HGF and HGF1 share a common ances-
tor protein with plasminogen and apo(A) and evolved most likely through gene duplica-
tion [16]. This evolution is visible when comparing the very similar exon–intron structure 
coding for the first three kringle domains of plasminogen and the α-chain of HGF and 
HGF1. In the case of HGF, the fourth kringle domain most likely resulted from internal 
duplication, since its organization is very different from the fourth kringle domain in 
plasminogen. The serine protease domain of the β-chain of HGF is not active. This inactiv-
ity is caused by point mutations resulting in replacement of two out of three amino acids 
of the catalytic triad (His534Gln and Ser673Tyr) [17]. In plasminogen, this catalytic triad 
is formed by His–Asp–Ser, whereas the triad consists of Gln–Asp–Tyr in HGF and Gln–
Gln–Tyr in HGF1. This suggests that mutation of the serine protease domain happened 
before the duplication of HGF and HGF1, but after the duplication of plasminogen, which 
retained its activity.

In contrast to plasminogen, the N-terminal domain of HGF is not cleaved [16] but is nec-
essary for receptor binding. The N-terminal and kringle 1 domain of HGF (NK1) is able to 
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associate with the receptor, but with reduced affinity. Adding the second kringle domain 
(NK2) doubles this binding affinity. The binding affinity of NK2 when compared to com-
plete HGF is still fivefold lower. The addition of kringle domains 3 and 4 did not lead to 
further improvement of binding affinity. This points toward a 2:2 complex of HGF and cMET 
[18]. The cleavage of pro-HGF results in an open form of HGF [19]. The 7-bladed propeller 
sema-domain of cMET contains the binding site for HGF [20]. A first high-affinity binding 
site is occupied by the N-terminal domain and the first kringle domain of HGF [19]. A second 
low-affinity binding site of cMET is bound by the serine protease domain on the β-chain of 
HGF [21]. Hereby, the mutations of the catalytic triad play a role in the association of HGF 
to cMET [21]. Complete HGF, consisting of both the α- and β-chains, is needed to activate 
cMET signaling [19].

Two naturally occurring splice variants of HGF have been described: NK1 [22] and NK2 
[23,24]. The NK1 variant consists of the N-terminal region and the first kringle domain. This 
variant is capable of binding to both heparin and cMET. This splice variant is able to induce 
phosphorylation of cMET, but a 16× higher concentration is needed to induce the same effect 
as full-length HGF [22]. In a concentration ranging from 5 to 10 nM, NK1 is capable of induc-
ing scattering, however, it is about 50 times less potent in comparison to HGF. When adding 
NK1 in 40-times molar excess to HGF, it reduces activity of HGF by 70% and is able to inhibit 
DNA synthesis [22]. The second splice variant consists of the N-terminal domain and the 
first two kringle domains (NK2) [24]. This variant competes with HGF for cMET binding and 
inhibits HGF-dependent mitogenesis [24].

2.2 ACTIVATION OF THE HGF-MET SIGNALING PATHWAY

HGF is the only known ligand of cMET. Mature HGF, consisting of an alpha and beta 
chains, binds cMET and causes receptor dimerization (Fig. 2.1). This is a paracrine pro-
cess, since HGF is mainly secreted by mesenchymal cells, and cMET is mainly expressed 
on epithelial cells [6,7,11,25]. Binding of HGF leads to cross-phosphorylation of cMET at 
positions Tyr1003, Tyr1234, Tyr1235, Tyr1349, and Tyr1356. Once Tyr1349 and Tyr1356 are 
phosphorylated, they serve as docking sites for the adaptor proteins Grb2 (Growth Factor 
Receptor Bound protein 2), Gab1 (Grb2-associated binding protein 1), and SHC (Src homol-
ogy 2 domain containing) [26]. These adaptor proteins link the receptor to its downstream 
signaling effectors [26–28]. In this process, several coreceptors are involved. The most impor-
tant coreceptor of cMET is CD44v6, a splice variant of CD44 containing exon 6. A complex 
is formed between cMET-HGF and CD44v6 [29]. Orian-Rousseau et al. [30] revealed a two-
step process. In the first step, this complex is formed and HGF-induced phosphorylation of 
cMET and its adaptor proteins takes place. In the second step, the cytoplasmic domain of 
CD44v6 is necessary to induce phosphorylation of MEK and ERK through HGF–cMET sig-
naling [30]. The cytoplasmic domain of CD44v6 is also necessary to induce internalization 
of the HGF–cMET signaling complex. Phosphorylated Tyr1003 is the binding site for the 
E3-ligase c-Cbl [31,32]. Internalization of HGF–cMET is dependent on the association of the 
cytoplasmic domain of CD44v6 with ERM proteins (Ezrin, Radixin, Moesin) and their con-
nection to the cytoskeleton [33]. A second coreceptor/enhancer is α6β4 integrin [34]. This 
integrin forms a complex with cMET that functions as a signal amplifier for HGF–cMET 



 2.2 ACTIvATION OF THE HGF-MET sIGNAlING PATHWAY 29

  

signaling. Active cMET phosphorylates the β4 subunit, which results in the recruitment 
of SHC and activation of phosphatidylinositol-3-kinase (PI3K) [34]. A third coreceptor/
amplifier is the Semaphorin 4D ligand and its receptor Plexin B1 [35,36]. Association of this 
complex with cMET is involved in cMET-induced angiogenesis [37]. Semaphorin 4D asso-
ciation with cMET is able to induce phosphorylation without the binding of HGF. However, 
this stimulation is weaker and delayed compared to HGF activation of cMET. Moreover, 
Semaphorin 4D–cMET is able to induce cell motility and morphogenesis, but is not able to 
stimulate cell proliferation. It also has no mitogenic effect on endothelial cells and is not 

FIG. 2.1 Schematic of HGF–cMET signaling. Abbreviations: HGF, hepatocyte growth factor; Gab1, Grb2-asso-
ciated binding protein 1; Grb2, growth factor receptor bound protein 2; Shp2/PTPN11, tyrosine protein phospha-
tase nonreceptor type 11; p120, p120 catenin; Shc, Src homology 2 domain containing; SOS, Son of Sevenless; MEK, 
mitogen-activated protein kinase kinase; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; 
p38, p38 mitogen-activated protein kinase; PI3K, phosphoinositide 3 kinase; Akt, protein kinase B; MDM, mouse 
double minute 2; GSK3β, glycogen synthase kinase 3 beta; mTOR, mammalian target of rapamycin: STAT3, signal 
transducer and activator of transcription 3.
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capable of inducing VEGF expression [37]. This association with cMET has been shown for 
all class B plexins [36], but more studies are warranted to elucidate downstream effects of 
these interactions. However, this interaction is reported to be antimigratory in the case of 
breast carcinoma [38] and melanocytes [39].

2.2.1 Mitogen-Activated Protein Kinase Cascades

HGF activation of cMET leads to the induction of several mitogen-activated protein kinase 
(MAPK) cascades. Signaling from the Grb2 adaptor protein leads to activation of Ras, either 
through direct association of Grb2 to cMET or indirectly by SHC binding to cMET [40]. In the 
meantime, activation of Ras is stimulated indirectly. The adaptor protein Gab1 recruits Shp2, 
which in turn dephosphorylates a phosphorylation site on Gab1 involved in the activation of 
p120-Ras-GAP. Inhibition of the p120 Ras GTPase activating protein leads to increased lev-
els of active Ras coupled to GTP [41]. Activation of Ras continues through several signaling 
pathways. First, Ras activates the Raf–MEK1/2–ERK1/2 cascade. This results in cell prolif-
eration and transformation. Second, Ras activates PI3K signaling. This stimulates Rac that 
phosphorylates MEKK1/2/3/4. On the one hand, MEK4/7 are phosphorylated, leading to 
activation of JNK1/2/3 [42] and, on the other hand, MEK3/6 activation leads to activation 
of p38 α/β/γ/δ [43,44]. The activation of both JNK and p38 signaling is associated with cell 
proliferation, transformation, differentiation, and apoptosis [42].

2.2.2 PI3K-Akt

Binding of HGF to cMET also results in the recruitment of the p85 subunit of PI3K to the 
receptor [45]. This leads to the activation of PI3K-Akt signaling. PI3K has several functions. 
First, it has an antiapoptotic effect [46] by inhibiting Bad, an effector of apoptosis [47], and at 
the same time activating MDM2, an inhibitor of p53 [48]. Second, it stimulates cell growth and 
proliferation through activation of mTOR [49], resulting in protein translation and cell growth, 
and by inhibiting GSK3β that activates cell-cycle regulators [50], leading to cell proliferation.

2.2.3 STAT3

STAT3 is another downstream effector of cMET. STAT3 is recruited directly to the cyto-
plasmic tail of cMET and upon phosphorylation forms homodimers that translocate to the 
nucleus [51]. In the nucleus, STAT3 binds to the promoters of several genes. STAT3-regulated 
genes are reported to play a role in tubulogenesis, leading to cell proliferation and differentia-
tion [51]. Furthermore, STAT3 also plays a role in pro-cancer immunity. IL6 is upregulated, 
activating a feed-forward loop by increasing STAT3 activation. Through the sequestering 
of RelA in the nucleus, NF-kB is activated. Moreover, STAT3 signaling is necessary for reg-
ulatory T-cell expansion, Th17 cells development, and the immunosuppressive effects of 
myeloid-derived suppressor cells [52].

2.2.4 HGF-Independent Activation and cMET Internalization

Besides activation by HGF, cMET can also be activated through cell adhesion. Hereby, 
α5β1 integrin plays a role. Once this integrin associates with type IV collagen, it forms a 
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complex with cMET, thus activating the receptor. Next, cMET phosphorylates Src, which in 
turn leads to the activation of FAK [53–56].

As already briefly mentioned, Tyr1003 in the juxtamembrane domain of cMET is phos-
phorylated upon activation. Once phosphorylated, this Tyr is part of a docking site for the 
E3-ligase c-Cbl [31]. This starts the breakdown process for cMET. Hereby, c-Cbl has two tasks. 
First, it recruits an E2-ligase that in turn ubiquinates cMET, marking cMET for internalization 
through clathrin-coated pits in a dynamin-dependent manner [57,58]. Second, c-Cbl attracts 
the CIN85–endophilin complex. This complex is involved in the invagination and scission of 
these clathrin-coated pits [59]. From here, intracellular cMET trafficking goes over the micro-
tubules from the early endosomal complex to the late perinuclear complex and finally cMET 
is broken down by the 26S proteasome [60].

Recycling of cMET from endosomes has also been reported. Hereby, GGA3 (Golgi-localized 
gamma-ear containing Arf-binding protein 3) plays an important role. After internalization, 
cMET is contained in Rab4/Rab5-positive endosomes. GGA3 colocalizes with these endo-
somes and stimulates recycling to the plasma membrane [61]. GGA3 has been shown to bind 
to Crk, which in turn binds the Gab1 adaptor protein that is associated to the cMET recep-
tor [62]. Loss of GGA3 results in increased breakdown of HGF-bound cMET, a decrease in 
ERK signaling, and a decrease in cell migration [61]. This decrease in ERK signaling can be 
explained by the continuous signaling of the cMET receptor once it is internalized [63]. PKCα 
is involved in the microtubule-dependent trafficking of cMET to the late endosome, whereas 
PKCε, on the other hand, controls sustained phosphorylation of ERK1/2 by cMET from the 
early endosome. Once internalized, cMET continues to signal and phosphorylate ERK1/2. 
PKCε is involved in the translocation of ERK1/2 from the cytoplasm to the focal complexes at 
the plasma membrane [58]. Here, ERK1/2 phosphorylates paxillin, thus contributing to cell 
migration [64].

Signaling from HGF–cMET continues from the perinuclear endosome. Rac1 associates 
with cMET from the moment of internalization, however signaling from the perinuclear 
endosome is necessary for sustained activation of Rac1. This is caused by the cMET-
dependent activation of Vav2, a Rho GEF able to activate Rac1. Next to Vav2, activation of 
PI3K is also necessary for sustained Rac1 activation [65]. The p85 subunit associates with 
cMET in the perinuclear endosome, and the PI3K product PIP3 regulates Vav2 activity 
[66]. Active Rac1 on the edges of the cell leads to membrane ruffling, cell migration, and 
invasion [65].

Activation of STAT3 also requires HGF–cMET signaling from the perinuclear endosome. 
Although phosphorylated STAT3 is assumed to diffuse freely to the nucleus, there is a long 
period of exposure to phosphatases between the cell membrane and the nucleus. By activat-
ing STAT3 in proximity to the nucleus, this exposure is considerably more limited, resulting 
in a strong STAT3 signal and translocation to the nucleus [67].

2.2.5 Receptor Shedding

The first report of cMET shedding dates back to 1995. Herein, Galvani et al. [68] described 
a reduction of cMET expression of 50% in reaction to the growth factor inhibitor suramin. 
Shedding of cMET can be caused by stress signals like TNF-α-actinomycin D and campto-
thecin [69], by activation of another receptor tyrosine kinase, e.g., epidermal growth factor 
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receptor (EGFR) [70] or by antibody treatment, e.g., DN30 [71]. This shedding has an extra 
advantage for treatment with antibodies, as it also functions as a decoy receptor for HGF, 
thus preventing cMET activation by two distinct mechanisms. However, not all antibod-
ies cause cMET shedding, as is illustrated by onartuzumab that does not induce shed-
ding or internalization of the receptor and prevents clearance of s-cMET [72]. ADAM10 or 
ADAM17 recognize the 998-SVD-1000 motif in cMET, which is mainly dependent on D1000 
[69]. Next, a second cleavage is performed in the membrane by γ-secretase [73], resulting 
in two intracellular parts of cMET that are degraded by the proteasome [74]. This process 
is independent of the kinase activity of cMET. The two remaining intracellular parts are 
pro-apoptotic in a kinase-dependent manner [69]. Soluble-cMET has been reported to be 
a biomarker for pre-eclampsia [75] and hepatocellular damage [76] and points toward a 
poorer outcome in non-small cell lung cancer (NSCLC), where it correlates with cMET 
expression [77].

2.3 HGF FUNCTIONS

HGF has a critical role in the development and organogenesis of several tissues, as 
described in the following sections.

2.3.1 Placenta

The importance of HGF in placenta formation is illustrated by HGF−/− or cMET−/− mice. 
Homozygous mice die in utero around E13.5–E15.5 and show deformation of the placenta, 
among other defects [78]. These homozygous-deficient embryos show reduced numbers of 
labyrinthine trophoblast cells, along with a decrease in labyrinth area size and poorly devel-
oped embryonic vessels and maternal sinuses. These defects can be rescued by stimulation 
with HGF in vitro. During embryogenesis, HGF is produced by the allantoic mesenchyme, 
whereas the cMET receptor is expressed on the extraembryonic ectoderm. Upon contact 
between these tissues, mitotic activity and scattering of trophoblasts are induced [78]. HGF 
is also needed in an earlier stage, the early postimplantation growth. Here, HGF does not 
stimulate the scattering of trophoblasts, but stimulates cell division of trophoblasts [79]. 
Pre-eclampsia is associated with impaired trophoblast invasion [80]. A study using human 
placenta explants showed that in the case of pre-eclampsia, the production of HGF was 25% 
less over 24 h [80]. This is confirmed by the results of a second study, where the level of sol-
uble cMET (s-cMET) in serum of pregnant women was determined, in both healthy subjects 
and patients with pre-eclampsia [81]. Here a significant lower concentration of s-cMET was 
measured in women suffering from pre-eclampsia when compared to healthy subjects, both 
in the first and second trimester of the pregnancy. Even more, a significantly lower s-cMET 
concentration was detected in the serum of women with early and serious pre-eclampsia 
when compared to women with later and milder pre-eclampsia [81].

HGF induces trophoblast motility by activation of the PI3K and MAPK pathways. 
Activation of p42/44 MAPK is necessary for motility and for induction of inducible NOS 
(iNOS) [82]. This activation of iNOS can be inhibited by transforming growth factor-β (TGF-β)  
[83]. Downstream of PI3K, activation of p70S6 [84] and Akt [85] are needed to induce 
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trophoblast motility. PI3K signaling also causes phosphorylation of GSK3β, a member of 
the Wnt signaling cascade [86]. In the case of GSK3β, phosphorylation causes inhibition and 
not activation. Inhibition of GSK3β leads to the activation of NF-kB and β-catenin. In turn, 
β-catenin activates the Lef/Tcf transcription factor [87], leading to cell survival.

There are four different isoforms of HGF identified that play a role during growth of the 
placenta [88]: the NK1 and NK2 isoforms and the dNK1 and dNK2 isoforms. The last two 
contain a deletion of five amino acids in the first kringle domain of HGF. All of these iso-
forms are expressed in the endometrium, but dNK2 is expressed at higher levels than NK2. 
Presumably, expression of the HGF antagonists NK1 and dNK1 moderates the activity of 
HGF in the endometrium. In contrast, NK1 and dNK1 are not expressed in the placenta, 
whereas NK2 and dNK2 are expressed in equal amounts [88].

2.3.2 Muscle

The development of muscles can be divided into several steps. First, the precursor cell 
pool in the dermomyotome needs to be established. Second, these precursors need to be 
delaminated and migrate to their final position. Third, the precursor cells proliferate and 
finally differentiate to form skeletal muscles [89]. HGF is one of the three important players 
in this process.

Pax3 is the first gene to become active. It is responsible for the establishment of the 
precursor pool and the delamination and migration of the cells [90]. This is visible in the 
Splotch mutant. This mutant contains a deletion in Pax3 [91] and lacks the limb muscles, 
whereas development of the axial and body wall musculature is not affected [92]. Pax3 
induces cMET expression. This is shown in the Splotch embryos wherein cMET expression 
is lacking [93,94]. Activation of the cMET–HGF axis is important to induce the delamina-
tion and migration of the myogenic precursor cells from the somites into the limb buds [95]. 
In mice embryos that are deficient in either cMET or HGF, these precursor cells develop 
normally in the dermomyotome, but fail to start the migration to the limb buds, resulting 
in the lack of hypaxial muscle groups. On the other hand, skeletal muscles outside the limb 
develop normally [95], showing that cMET signaling is not necessary in further differen-
tiation of muscle cells. In normal embryos, cMET expression is detected in the migrating 
myogenic precursor cells [96]. HGF, on the other hand, is expressed in the mesenchyme 
[97]. It has been shown that HGF expression is stimulated by fibroblast growth factor (FGF) 
in the apical ectodermal ridge. When this zone is removed, HGF expression was detected 
until the 18/19th stage, when the apical ectodermal ridge is formed. This shows that FGF is 
necessary for the continuation of HGF production [96]. The zone of polarizing activity, on 
the other hand, controls HGF expression by expression of BMP2. The removal of this zone 
leads to ectopic and enhanced expression of HGF [96]. The homeobox gene Lbx1 is induced 
before delamination, expressed during migration and downregulated during differentia-
tion. This gene is responsible for the correct guiding of the precursor cells during migration 
[89]. Before the final differentiation of the muscle progenitor cells, a proliferation step takes 
place. Here, cMET also plays a role, since a mutation of the Grb2 binding site in cMET leads 
to a decrease in the size of skeletal limb muscles [98]. In these homozygotic cMETGrb2/Grb2  
mice, the placenta and liver are developed normally. In contrast, muscles are reduced in 
size, although no effect on migration or differentiation of myoblasts are observed during 
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embryogenesis. Even more, defects in the appendicular and axial muscles are observed. 
These muscle groups do not derive from migratory precursor cells. A reduction in the 
secondary muscle fibers is observed in all muscle groups, pointing toward a role for cMET 
during proliferation of myoblasts forming secondary muscle fibers [98].

2.3.3 Liver

During embryogenesis, the liver develops from the ventral endoderm under the influ-
ence of the HNF3β and GATA-4 transcription factors [99]. Interaction of the liver bud with 
the cardiac mesoderm leads to hepatic induction. The cardiac mesoderm produces FGF-8 
before hepatic induction [100] and FGF-1 and FGF-2 at the time of hepatic induction [101]. 
These FGFs have been shown to be necessary and sufficient for hepatic induction, but not 
sufficient for further liver development [101]. Next to the influence of the cardiac mesoderm, 
the septum-derived mesenchyme also plays a role in liver development. Here, bone mor-
phogenetic protein (BMP) is produced that, in parallel to FGF, induces liver development 
[102]. BMP4 is necessary during hepatic specification and to inhibit the expression of pan-
creatic genes. This is shown in BMP4 knockout mice that present with a delay in liver bud 
formation. Also the use of Noggin, a BMP inhibitor, inhibits the outgrowth and migration of 
hepatic cells [102]. HGF is also expressed by the septum transversum mesenchyme, whereas 
its receptor cMET is expressed on hepatocytes [103]. A knockout of either HGF or cMET 
leads to death in utero, due to strongly reduced liver growth and disturbed hematopoiesis 
[103,104]. When culturing hepatocytes from HGF−/− embryos in vitro in medium supple-
mented with growth factors supporting epithelial growth, they showed no difference on the 
survival or growth of these remaining hepatic cells [103], confirming the mitogenic influence 
of HGF on hepatocytes. Activation of cMET leads to the expression of the c-Jun transcrip-
tion factor. Knockout c-Jun embryos display the same phenotype as HGF or cMET knock-
out embryos, due to reduced hematopoiesis that is not capable of sustaining the growing 
embryo [104,105]. These matching phenotypes point toward the involvement of the HGF/
cMET/c-Jun axis in liver development.

2.3.4 Kidney

During the development of the renal system, contacts between the ureteric bud and the 
metanephrogenic mesenchyme starts the branching process [106]. During branching and 
invasion into the mesenchyme, several growth factors work together to coordinate this pro-
cess [107]. In the first step, GDNF31 and formin IV [108,109] are important to induce ureteric 
bud formation. Disruption of the formin IV isoform has been shown to lead to renal agen-
esis/dysgenesis due to failure in ureteric bud outgrowth and branching [108]. Formin IV, a 
known actin nucleator, colocalizes with the actin cytoskeleton and in the perinuclear zone in 
quiescent epithelial cells. After stimulation with HGF, formin IV transiently translocated in 
these cells to the nucleus in a MAPK-dependent manner [110]. However, its exact role in the 
nucleus is not known to date.

Embryos from HGF−/− mice are reported to have normal renal development. However, 
homozygous deletion of HGF or cMET leads to death in utero, with 12% of embryos reach-
ing the E14.5 stage and 2% the E16.5 stage [103], whereas the induction of renal branching 
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is situated around stage E13.5 [111]. This urges for caution on drawing conclusions on the 
necessity of HGF for renal development based on an unconditional HGF knockout model. 
Several findings point toward an important role for HGF during renal development. First, 
glycosaminoglycans are necessary for ureteric bud development. When these glycosamino-
glycans are removed, the development of the ureteric bud stops, and this effect is rescued 
by addition of HGF only [112]. Second, contact with the mesenchyme is necessary to start 
the development of the kidney. When the mesenchyme and epithelium are separated, devel-
opment stops, whereas restoration in vitro rescued this effect [106]. With the mesenchyme 
being the main producer of HGF and the epithelium mainly expressing cMET [113], this 
also points toward an important role for the HGF–cMET axis in kidney development. Third, 
when growing developing murine kidneys (d11.5–12.5) were cultured in vitro, addition of 
anti-HGF serum resulted in significant growth inhibition, a poorly defined ureteric duct and 
poorly developed branches [111,113].

To control the branching of the nephrotic duct, BMPs serve as negative signals. They 
prevent the branching into already colonized regions of the mesenchyme and stimulate 
branching into new regions [114]. BMP4 has been shown to inhibit branching, but stimulates 
tubule elongation [115]. In high concentrations, BMP7 inhibits branching, whereas in low 
concentration it stimulates branching [116]. Finally, MMP9 is needed to facilitate the growth 
of the branches into the mesenchyme [117].

The first critical pathway for HGF-induced branching is the MAPK pathway [118]. HGF 
induces phosphorylation of MKK1 through activation of cMET, whereas EGF induces 
phosphorylation of both MKK1 and ERK5. Inhibition of MKK1 by PD98059 abolishes 
HGF-induced cell migration and branching completely, whereas it only partially inhibited 
EGF-induced motility and branching. Phosphorylation studies showed that this inhibitor 
is able to inhibit MKK1 completely, whereas ERK5 is still partially active. Using the U0126 
inhibitor, which inhibits both MKK1 and ERK5, the effects of both HGF and EGF were 
abolished completely. Expression of a dominant-negative ERK5 only influenced cell motil-
ity and branching after activation of EGF and did not affect the HGF-induced effects [118]. 
The manner of signaling, either transiently or endured, is important for the correct induc-
tion of branching. The cell-surface heparan sulfate Gpc4 is needed for sustained signaling 
through MAPK by HGF [119]. Without Gpc4, HGF is still able to induce cell migration 
and proliferation, but fails to induce branching. Branching can be rescued by addition of 
EGF [119]. Although the exact role of Gpc4 in HGF signaling has not been revealed yet, 
possibly this role is similar to that of Gpc1. Gpc1 is able to induce lipid rafts formation, 
thus stabilizing the HGF–cMET signaling complex, which leads to sustained downstream 
signaling [120].

Next to the MAPK pathway, activation of the PI3K pathway is also involved in branching 
[119,121,122]. Addition of PD98059 (MAPK inhibitor) or LY294002 (PI3K inhibitor) leads to 
inhibition of scattering, but morphologically different outcomes. A constitutively active form 
of PI3K was able to induce scattering, but active MAPK was needed during this process. 
Activation of Akt of Rac did not lead to scattering of the cells, whereas induction of scatter-
ing by active Ras or PI3K was sensitive to both the LY294002 and PD98059 inhibitors. These 
findings point toward a role for PI3K act signaling in branching, but this signaling does not 
include downstream activation of Akt or Rac, suggesting a different downstream signaliza-
tion path [122].
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2.3.5 Nervous System

Nervous tissue arises from the node of Hensen, which gives rise to the nervous streak dur-
ing early stages of embryogenesis. HGF is expressed in this node of Hensen [123] and plays 
a role in retaining the neural competence of this tissue [124]. A marker of this competence is 
L5220. When the expression of L5220 decreases, the level of competence of the node decreases. 
Addition of HGF after its normal expression window leads to a longer expression of L5220 
and thus a prolonged time of complete competence. Ectopic addition of HGF leads to the 
formation of a neural streak/neural plate-like structure, which does not possess the com-
pletely undetermined character of the normal neural plate [124]. However, HGF or cMET 
knockout embryos do not show large defects in the neural system up to their death in utero 
at E13.5–E15.5, which suggests that HGF is involved but not necessary in these early stages 
of neuronal development [103].

In later stages, HGF is involved in neuronal survival, proliferation, and outgrowth. First, 
HGF enhances the uptake of dopamine by the dopaminergic neurons in the brain [125]. 
In the brain, HGF is mainly produced by microglia [126], where it functions as a neuro-
trophic factor (together with bFGF) through the induction of Ras signaling [126]. In con-
trast, cMET is expressed in microglia cells, astrocytes, and neurons [126]. Second, in the 
case of sympathetic neurons, HGF plays a role in survival and axonal outgrowth [127]. 
Both HGF and cMET are expressed during the development of the sympathetic ganglia 
[127]. When anti-HGF antibodies are added, a reduced number of sympathetic neuroblasts 
is observed, along with reduced survival [127]. Expression of a mutated form of cMET 
also leads to increased sympathetic neuroblast apoptosis in vivo [127]. Third, signaling 
mutants of cMET lead to a reduction in sensory nerves in the skin of limbs and the thorax 
[128]. Together with NGF, HGF is responsible for the axonal outgrowth from the dorsal 
root ganglion (DRG) neurons and sustains a part of these DRG neurons. No synergy with 
other neurotrophic factors as BDNF and NT3 is detected. Disruption of the Grb2 docking 
site of cMET does not lead to defects in the development of these sensory neurons, point-
ing toward downstream signaling that is independent of Grb2 [128]. Finally, HGF acts as 
a mitogen for Schwann cells [129]. However, anti-HGF antibodies do not lead to impaired 
development of Schwann cells. This suggests that HGF is not necessary for Schwann cell 
development [129].

2.3.6 Testis

During the development of the testis, one of the first steps is the migration of cells from 
the mesonephric mesenchyme toward the celomic epithelium [130]. During this stage, 
HGF is expressed by the celomic epithelium, whereas cMET expression is detected in the 
mesonephric mesenchyme [131]. HGF functions as a chemoattractant for the migrating 
cells from the mesonephric mesenchyme [132]. These migrating cells are necessary for the 
testicular cord morphogenesis [130]. At stage E12.5, cMET is expressed in the develop-
ing testicular cords, whereas HGF production is situated in the stroma and myoid cells 
[131,132]. Organ culture ex vivo demonstrated that HGF is sufficient for testis differen-
tiation and testicular cord formation from undifferentiated male urogenital ridges [132]. 
Around E17.5, cMET expression in the testicular cord is downregulated, cMET expres-
sion increased in interstitial fetal Leydig cells, and HGF is now being produced by the 
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interstitial compartment [133]. During this stage, HGF promotes testosterone production 
[133] and Leydig cell survival and differentiation [134].

2.4 DYSREGULATION IN CANCER

2.4.1 cMET Mutations

The cMET receptor has several domains that are crucial for its function. A mutation in each 
one of these domains can deregulate its activity and have oncogenic potential. Mutations in 
the ligand-binding domain can affect HGF affinity, whereas mutations in the kinase domain 
might lead to a constitutively active receptor. Mutations in the juxtamembrane domain, con-
taining the E3-ligase c-Cbl docking site, can lead to impaired cMET breakdown. Many muta-
tions are known in cMET, but only a few of them are carcinogenic. Therefore, we will limit 
our description to mutations that influence treatment and resistance; for the complete list of 
mutations, we refer the reader to the COSMIC and ClinVar databases.

Several splice site mutations are known that cause exon 14 skipping, which occur in 
around 3% of adenocarcinomas [135]. Exon 14 forms part of the juxtamembrane domain 
and contains the c-Cbl docking area. Therefore, a deletion of this exon leads to impaired 
breakdown of cMET and prolongs signaling. These mutations can be present in the 5′ or 3′ 
splice sites, the branching A or the polypyrimidine tract that are all necessary for the splic-
ing process. Known types of mutations that cause exon 14 skipping are missense muta-
tions and deletions [136,137]. Patients with detected exon 14 skipping have been shown to 
respond to several cMET small-molecule inhibitors like crizotinib, capmatinib, and cabo-
zantinib [137].

Hereditary papillary renal cell carcinoma is the only cancer type with known germline 
mutations in cMET to date. These mutations are mostly situated in the kinase domain of 
cMET and lead to an autosomal-dominant syndrome. Known mutated codons include 
V1110L/I, H1112R/L/Y, M1149T, V1238I, D1246N/H, V1238I, and M1268T [138–140]. 
Some of these mutations show homology to previously known mutations in oncogenes. The 
D1246N/H missense mutations are compatible with the D816V mutation in cKit [141,142], 
whereas the Y1248C/H/D mutations are related to the M918T mutation in RET [143]. All of 
these above-mentioned mutations have transforming capabilities and lead to constitutive, 
activated cMET.

Mutations causing resistance to cMET-targeted therapies have been reported: Y1230C [144] 
and D1228N/V [145,146]. The activation loop of cMET controls the activity of the receptor. 
This loop closes the ATP binding pocket of the receptor by interacting through salt bridges 
with amino acids at positions K1110 and D1228. Y1230 is located on the activation loop and 
is turned inwards through interaction with A1226 [147]. Type I small-molecule cMET inhibi-
tors (crizotinib, capmatinib, tepotinib) interact with the receptor through the formation of 
π-stacks with the Y1230 residue. These π-stacks are abolished by the substitution of Tyr to 
Cys at this position [144]. Type II cMET inhibitors (cabozantinib, glesatinib) have an extra 
interaction with cMET through the association with a hydrophobic pocket on the receptor, 
thus being less dependent on these π-stacks [148]. A missense mutation at D1228, on the other 
hand, leads to a destabilization of the activation loop. These mutations have been reported in 
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both patients presenting with cMET exon 14 skipping and cMET amplification after EGFR-
TKI treatment [144–146] and lead to resistance against type I cMET small-molecule inhibitors, 
but can be overcome by type II inhibitors.

2.4.2 Amplification and Fusion Protein of cMET

Amplification of cMET has been described to occur in approximately 1.5% of NSCLC 
adenocarcinomas [135] and in around 5% of gastric carcinoma [149,150] and glioblastomas 
[151]. A consensus of scoring criteria is lacking to determine the exact cut-off for cMET 
amplification, leading to the reporting of varying percentages. However, this cut-off might 
prove to be important for treatment outcomes as has been reported in the first results of 
the crizotinib trial in NSCLC [152]. Herein, patients with a cMET/CEN7 ratio >5 showed 
a partial response to crizotinib in 50% of cases, when compared to 20% in the intermediate 
amplified population (>2.2 to <5) and 0% in the low amplified population (>1.8 to ≤2.2) 
[152]. Moreover, Noonan et al. [153] showed that patients with a low and intermediate 
ratio showed concomitant driver mutations in other genes in 52% and 50% of cases, respec-
tively, whereas for the high amplification this was 0%. It is important to make a distinction 
between cMET amplification and polysomy, given that besides cMET, the genes for EGFR 
and HGF are also located on chromosome 7. In NSCLC patients that originally presented 
with a sensitizing mutation in EGFR and that received an EGFR-TKI, the percentage of 
cMET amplification rises to approximately 20% [154,155]. We will discuss this in more 
detail in the next section. In addition to amplification, a fusion protein of cMET is also 
known: TPR-MET [156,157]. This fusion protein was originally identified in the MNNG-
HOS cell line and is the result of a translocation between the TPR gene on chromosome 
1 and the cMET gene [158]. The fusion protein is located intracellularly, and through the 
bindings of the coiled coils of TPR the kinase domain of cMET autophosphorylates and is 
constitutively active [159]. Moreover, the juxtamembrane domain of cMET is missing in the 
fusion protein, resulting in impaired breakdown of the fusion protein, thus contributing to 
its oncogenicity [160]. Because the kinase domain of cMET is retained, TPR-MET is inhib-
ited by small-molecule inhibitors, like SU11274 [161]. In addition to NSCLC, TPR-MET has 
also been reported in gastric carcinoma [157].

2.4.3 cMET Overexpression

Overexpression can result from several dysregulations. First, epigenetic regulation 
through the loss of DNA methylation might result in higher promotor activity, causing 
cMET overexpression [162]. Second, miRNA regulation of the promotor can also result in 
increased expression [163]. Finally, the transcription of cMET can be upregulated, leading 
to higher translational activity and expression [164]. In the case of NSCLC, cMET over-
expression has not proved to be a good biomarker for response to cMET small-molecule 
inhibitors, as was shown in the onartuzumab phase III trials [165]. The percent of cMET-
overexpressing tumors varied substantially between the different studies, ranging from 
14% to over 50% of cases in NSCLC in various patient populations [166–169]. The same 
variation is seen in gastric carcinoma [150,170], glioma [151,171], and pancreatic cancer 
[172,173].
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2.4.4 HGF Overexpression

Like cMET overexpression, HGF overexpression can be caused by transcriptional [174] or 
epigenetic changes [162]. However, autocrine or paracrine loops can also cause overexpres-
sion of HGF and thus increase cMET activity [175]. Therefore, a distinction between HGF 
expression between the stroma and the tumor cells themselves is important. The reported 
percentages of cells with HGF overexpression range from 25% to 82% in tumor cells [176,177]. 
These loops have been described in multiple cancer types: hepatoma [178], lung carcinoma 
[179], and multiple myeloma [180], among others.

2.5 HGF INHIBITORS FOR CANCER THERAPY

The HGF–cMET signaling pathway represents a promising drug target for novel anticancer 
strategies. Targeting the HGF ligand or the cMET receptor are two possible ways to influence 
the activation of this pathway. In general, agents against the HGF ligand can be further divided 
into HGF activation inhibitors or HGF inhibitors [181]. HGF activation inhibitors prevent the 
cleavage of pro-HGF into the active form and HGF inhibitors block the direct binding of HGF 
to the cMET receptor. These inhibitors exist as monoclonal antibodies or small molecules. 
Moreover, blocking the cMET receptor by cMET antagonists or cMET tyrosine kinase inhibi-
tors (TKIs) represents alternative therapeutic strategies for modifying HGF–cMET signaling 
pathway [181,182]. HGF inhibitors can be used as single agents or in combination with other 
anticancer drugs such as cytostatic drugs or targeted compounds [182,183]. Most of the HGF–
cMET inhibitors have shown encouraging results when used in drug combination studies.

2.5.1 HGF Activation Inhibitors

The inactive precursor of HGF (pro-HGF) transforms to its active form, thanks to the bal-
ance between the activators (HGFAs) and the inhibitors (HAIs) [184,185]. Several authors 
investigated the role of HAIs in solid tumors. HAI-1 was identified as a prognostic marker 
for prostate cancer and might be a novel target for the treatment of this malignancy. The 
authors described that the level of HAI-1 changes in prostate cancer compared to benign pros-
tate hyperplasia. Further, a low level of HAI-1 correlated with a high Gleason score, a more 
advanced pathological stage as well as worse clinical outcome [186]. The same trend was 
observed by Tsai et al. [187] for HAI-2 in human prostate cancer progression. The expression 
of HAI-2 decreased throughout progression in cell invasion capability, contributing to tumor 
genesis and metastasis. Therefore, HAI-1 and HAI-2 might represent novel prognostic mark-
ers as well as therapeutic targets. To date, however, no clinical tests for HAIs are available.

2.5.2 HGF Inhibitors

HGF inhibitors bind to HGF, blocking binding to the cMET receptor and resulting in sub-
sequent effects on downstream activation of the pathway. Several monoclonal antibodies 
against HGF have been tested in preclinical studies, such as rilotumumab, ficlatuzumab, and 
TAK701. Rilotumumab is a fully humanized IgG2 monoclonal antibody [188]. Early preclinical  
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data showed synergistic cytotoxic effects with temozolomide and docetaxel [189,190]. In a 
phase II study evaluating the efficacy of rilotumumab in combination with capecitabine vs 
placebo plus capecitabine in patients affected by gastric or esophagogastric junction tumors, 
the patients with cMET overexpression experienced better progression-free survival (PFS) and 
overall survival (OS) with rilotumumab and capecitabine combination [191]. Ficlatuzumab 
is a humanized anti-HGF IgG1 monoclonal antibody. Mok et al. [192] evaluated its efficacy 
in combination with gefitinib. In the overall Asian population, no significant benefit from the 
addition of ficlatuzumab to gefitinib in patients with advanced stage lung adenocarcinoma 
was reported, though patients classified as “VeriStrat poor” may benefit from ficlatuzumab 
combination therapy [192]. TAK701 is a humanized monoclonal antibody directed against 
HGF [193]. Addition of TAK-701 to gefitinib is a promising strategy to overcome EGFR-TKI 
resistance induced by HGF in NSCLC with activating EGFR mutation [194].

2.5.3 MET Antagonists

cMET antagonists compete with HGF for binding to cMET which causes cMET degrada-
tion and inactivation of the pathway [195]. Several cMET antagonists have been investigated 
in preclinical studies. However, disappointing results from recent clinical studies have been 
obtained with onartuzumab, in particular, for colorectal cancer (CRC), gastric cancer, glio-
blastoma, and NSCLC, such as in the phase III study NCT01456325 METlung.

This study analyzed the efficacy and safety of combination therapy with onartuzumab 
and erlotinib in patients with locally advanced or metastatic NSCLC, after progression on 
first-line with a platinum-based chemotherapy regimen. Moreover, patient selection accord-
ing to MET expression by immunohistochemistry was provided. The authors concluded that 
the combination of onartuzumab and erlotinib did not improve clinical outcomes and, on 
the contrary, shorter OS was observed in the onartuzumab arm, compared with erlotinib in 
patients with cMET-positive NSCLC [196]. Further, Wakelee and coworkers [197] observed 
that onartuzumab does not provide any clinical benefit when given in combination with cur-
rent first-line standard-of-care chemotherapy regimen for nonsquamous NSCLC. Recently, 
the results of a randomized phase II trial investigating the role of onartuzumab in metastatic 
CRC were published. Onartuzumab combined with FOLFOX (5-FU and oxaliplatin regimen) 
and bevacizumab did not significantly improve efficacy outcomes in this setting and, more-
over, MET expression was not a predictive biomarker [198]. The same disappointing results 
were obtained in the METGastric Randomized Clinical Trial where the addition of onartu-
zumab to FOLFOX did not significantly improve OS, PFS, or ORR vs FOLFOX and placebo. 
Moreover, as in previous trials, cMET expression did not predict the clinical response to onar-
tuzumab treatment in patients affected by metastatic gastric cancer [199]. Finally, in another 
phase II study, there was no evidence of further clinical benefit with the addition of onar-
tuzumab to bevacizumab compared with bevacizumab plus placebo in unselected patients 
with recurrent glioblastoma [200].

2.5.4 MET Kinase Inhibitors

Targeting intracellular cMET with cMET kinase inhibitors represents another approach 
for HGF–cMET signaling pathway deactivation. These kinase inhibitors can be divided 
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into two groups: selective cMET kinase inhibitors (tivantinib, savolitinib) and nonselective 
cMET kinase inhibitors (crizotinib, cabozantinib, foretinib). A phase II study evaluated 
the efficacy of the tivantinib with erlotinib in patients with locally advanced or meta-
static EGFR mutation-positive NSCLC after progression on EGFR-TKI (gefitinib or erlo-
tinib) [201]; this study enrolled 45 NSCLC patients with acquired resistance to EGFR-TKIs 
and who continued treatment with the combination of tivantinib and erlotinib. The median 
PFS and median OS were 2.7 months and 18.0 months, respectively. Interestingly, bet-
ter clinical outcomes were obtained in patients whose tumors overexpressed cMET [201]. 
In another study, the combination of tivantinib and erlotinib was compared to erlotinib 
monotherapy in nonsquamous NSCLC patients with one or two lines of prior chemother-
apy. No statistically significant difference in OS between the arms was observed, although 
a significant improvement in PFS was observed in the group of patients with KRAS-mutant 
tumors (P = 0.006) [202]. Eng et al. [203] evaluated the role of tivantinib in combination 
with CETIRI (irinotecan and cetuximab) in patients with metastatic KRAS wild-type CRC, 
as a second-line treatment. The combination of tivantinib and CETIRI was well tolerated 
but did not significantly improve PFS. Subgroup analyses trended in favor of tivantinib in 
patients with overexpression of cMET, though further studies are needed to confirm these 
results [203]. In HCC patients, a significant improvement in OS was observed in patients 
with cMET-overexpressed tumors in a phase II study; the results of a phase III study in 
the subgroup of cMET-overexpressed HCC tumors after sorafenib failure will be soon to 
come [204].

Crizotinib is a small-molecule inhibitor of the anaplastic lymphoma kinase (ALK) with 
additional activity against the cMET, ROS, and RON receptors. Crizotinib was approved for 
use in ALK-rearranged advanced NSCLC [205–207]. In a case report recently published by 
Pietrantonio et al. [208], the authors described a patient affected by metastatic CRC, BRAF-
mutated. This patient initially responded to combination treatment with anti-EGFR (panitu-
mumab) and anti-BRAF (vemurafenib). At progression, rebiopsy was provided and cMET 
amplification was determined (not found in the pretreatment specimen). Probably, ectopic 
cMET overexpression led to resistance to panitumumab and vemurafenib. Based on these 
data, the patient was treated with crizotinib and vemurafenib, with rapid and marked effec-
tiveness [208].

Cabozantinib is a small-molecule inhibitor of cMET, VEGFR2, KIT, and RET followed 
by AXL and FLT3 [209] and is approved for the treatment of metastatic medullary thyroid 
cancer and for the second-line therapy for metastatic renal cell carcinoma (RCC) [210,211]. 
A phase II trial compared cabozantinib with sunitinib as the first-line therapy in patients 
with metastatic RCC. Cabozantinib demonstrated a significant clinical benefit in PFS and 
ORR over standard-of-care sunitinib as the first-line therapy in patients with intermediate- 
or poor-risk metastatic RCC [212]. Daud et al. [213] evaluated the role of cabozantinib in 
patients affected by malignant melanoma. Median PFS was 4.1 months with cabozantinib 
and 2.8 months with placebo (hazard ratio of 0.59; P = 0.284). The authors concluded that 
cabozantinib has clinical activity in patients with metastatic melanoma, including uveal 
melanoma, although further clinical investigation is warranted [213]. Interestingly, a small, 
randomized phase II trial evaluated the efficacy of erlotinib or cabozantinib monotherapy, 
or combination treatment with erlotinib and cabozantinib as second-line or third-line 
treatment of patients with wild-type EGFR and advanced NSCLC. This trial showed that 
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cabozantinib alone or combined with erlotinib had superior efficacy to that of erlotinib 
alone [214]. The efficacy of cabozantinib was also evaluated in a cohort of metastatic breast 
cancer patients in a phase II study and demonstrated clinical activity including objective 
response and disease control [215].

2.6 TARGETING HGF–CMET PATHWAY IN SOLID 
TUMORS TO OVERCOME DRUG RESISTANCE

HGF–cMET signaling pathway is implicated in mechanisms of acquired resistance to 
inhibitors against EGFR (gefitinib), VEGF (sunitinib), HER-2 (trastuzumab and lapatinib), 
and BRAF (vemurafenib) [216–220]. In the following paragraphs, we describe how targeting 
of the HGF–cMET signaling pathway can overcome the drug resistance in NSCLC, RCC, 
pancreatic cancer (PDAC), and CRC.

2.6.1 Lung Cancer

Lung cancer is the leading cancer worldwide, both in incidence and in mortality [221]. 
Eighty percent of lung cancers are NSCLC. In turn, NSCLC can be divided into two main 
histological subtypes: adenocarcinoma and squamous cell carcinoma. Adenocarcinomas 
exhibit glandular differentiation and mostly arise in the lung periphery, whereas squamous 
cell carcinomas often present with keratinization and intercellular bridges. Squamous cell 
carcinomas occur mostly in the main and lobular bronchi [222]. The 5-year survival rate for 
NSCLC is very low: around 15%. The current treatment regime [223] is mainly dependent on 
the stage. For early stages of NSCLC (stage I/II/IIIa), local surgery is the preferred treatment 
option, with adjuvant chemotherapy for stage II patients. This chemotherapy mostly consists 
of a two-drug combination with cisplatin. If surgery is not an option, radiotherapy is a suited 
treatment option. In locally advanced NSCLC, chemotherapy is given to patients that can 
tolerate it. This regimen consists mostly of a cisplatin–vinorelbine or cisplatin–etoposide dou-
blet; combinations with carboplatin are used to a lesser extent. Resectable tumor surgery is 
an option after induction therapy [223]. Recently, immunotherapy has also become available 
for treatment of NSCLC [224].

Several oncogenic drivers have been identified in NSCLC and the list is continuously 
expanding: EGFR, ALK, cMET, ROS1, RET, FGFR, and NTRK [225]. These drivers are mainly 
expressed in the adenocarcinoma subtype. In the case of EGFR and ALK, multiple genera-
tions of inhibitors have been approved for therapy, whereas for the other drivers, clinical 
trials are mostly ongoing [226].

Focusing on the HGF–cMET axis, cMET amplification and cMET exon 14 skipping are 
known as oncogenic drivers in NSCLC. Both occur in around 2% of NSCLC and in both 
the adenocarcinoma and squamous cell carcinoma subtypes. They are not mutually exclu-
sive and both are responsive to cMET small-molecule inhibitors [136,137]. Several TKIs are 
currently in clinical trials for the treatment of cMET aberrations, with the dual ALK-cMET 
inhibitor crizotinib being the most advanced [227].

In the context of resistance, cMET in NSCLC is mostly known to cause resistance against 
EGFR-TKIs (e.g., erlotinib, gefitinib, afatinib, osimertinib). Primarily cMET amplification is 
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reported in patients with resistance [216,228]. The percentage of cMET amplification increases 
in this population of EGFR-TKI-treated patients to approximately 20% [154,155]. The resis-
tance mechanism of cMET activation can be explained by the extensive cross-talk between 
EGFR and cMET signaling [229], with largely overlapping downstream signaling effectors 
like MAPK and PI3K-Akt. In total, a core network of around 50 proteins can be identified 
[229]. Moreover, activated EGFR is able to stimulate cMET activation and vice versa [230]. 
Active EGFR influences cMET in several ways. It increases cMET phosphorylation and expres-
sion and decreases ubiquitination of cMET. This effect is enhanced by Her3. Active cMET, 
in turn, activates EGFR indirectly through MAPK activation [230]. This extensive cross-talk 
also explains the many clinical trials that immediately focus on combinations of cMET- and 
EGFR-targeted therapies [227]. However, not all of these combinations have proved to be suc-
cessful, as was illustrated in the onartuzumab + erlotinib trial that was stopped due to futility 
[165,231] and the tivantinib + erlotinib trial that did not reach its primary endpoint [232].

Activation of cMET also plays a role in combination with conventional therapies (chemother-
apy, radiation therapy). First, radiation therapy is known to upregulate cMET expression [233]. 
This effect can be explained by the involvement of cMET in tissue repair [234] and homologous 
recombination [235] that are both activated in a reaction to restore damage by radiation therapy. 
However, the combination of cMET inhibition and radiotherapy still needs to be tested in patients. 
Second, cMET inhibition also has an effect in combination with chemotherapy. This interplay is 
more complex and seems to be dependent on the type of chemotherapy and the form of can-
cer. cMET is reported to play a role in chemoresistance in both pancreatic cancer (gemcitabine) 
[236] and ovarian cancer (cisplatin and paclitaxel) [237]. Inhibition of cMET is able to overcome 
this resistance in ovarian cancer (carboplatin, paclitaxel) [238] and gastric carcinoma (irinotecan) 
[239]. In vitro results show that combining cMET and cisplatin did not lead to synergism [240], 
whereas functional studies show that addition of HGF increases chemoresistance toward cispla-
tin in NSCLC cells through downregulation of AIF [241]. Reports on cMET and chemotherapy 
are often contradicting, and clinical trials are necessary to elucidate the profit of combining cMET 
inhibitors and chemotherapy in patients.

2.6.2 Renal Cancer

Renal cancer (RCC) is the third most frequent cancer originating from the genitourinary 
organs [242]. Based on the place of origin of cancer (proximal tubule of the kidney or collect-
ing duct), four main histological types can be recognized: clear cell (ccRCC), papillary (pRCC, 
type 1 which consists of predominantly basophilic cells and type 2 which consists of mostly 
eosinophilic cells), chromophobe, and collecting duct tumor. The most frequent type is ccRCC. 
Division into histological types influences the patient outcome: in particular, metastatic pRCC 
has a worse prognosis than ccRCC [243]. Moreover, type 1 and type 2 pRCC have different 
clinical features. Type 1 pRCC is characterized by an indolent clinical course, and type 2 pRCC 
by more aggressive clinical behavior [244]. The HGF–cMET signaling pathway plays an impor-
tant role in RCC pathogenesis. In particular, mutation or functional inactivation of the von 
Hippel–Lindau (VHL) gene is present in the majority of ccRCC cases. Absence or decreased 
levels of the VHL protein leads to transcriptional activation of HIF-targeted genes, including 
VEGF, PDGF, TGF-α, HGF, and cMET [245–247]. The expression of cMET and HGF in RCC 
is 70% and 60%, respectively [248]. Moreover, some authors reported that cMET expression 
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is higher in pRCC than in ccRCC, and higher in type 1 pRCC compared to type 2 pRCC [249]. 
pRCC often shows trisomy of chromosome 7, where the cMET gene is located [250]. Further, 
both sporadic and hereditary forms show cMET gene mutations [251]. Interestingly, some 
RCC cancer stem cells (CSCs) overexpress the cMET receptor which might play a role in the 
pathogenesis of bone metastases induced by RCC CSCs in mice and humans [252].

Nowadays, first-line treatment for patients affected by metastatic RCC includes several anti-
VEGF inhibitors (sunitinib, pazopanib, and bevacizumab) and the mTOR inhibitor (temsiro-
limus) [211]. VEGF-targeted therapies have demonstrated a survival benefit in RCC patients 
with PFS of about 9–11 months [211]. Cross-talk between the VEGFR and HGF–cMET pathways 
is implicated in the resistance to anti-VEGFR therapies and therefore the clinical testing of this 
combination is very promising [253,254]. In fact, Ciamporcero et al. [247] evaluated the effects 
of either monotherapy or a combination treatment strategy targeting the VEGF (axitinib) and 
cMET (crizotinib) pathways in animal models affected by ccRCC. As expected, the combination 
treatment was more effective than the monotherapy with crizotinib. In another study, increased 
expression of HGF was observed in mouse models resistant to sunitinib. Combination with 
a cMET inhibitor was able to overcome sunitinib resistance [217]. Interestingly, foretinib—a 
dual inhibitor of cMET and VEGFR showed efficacy in pRCC with germline cMET mutations 
[255]. Another cMET inhibitor, savolitinib, is undergoing clinical development for various can-
cer types, including pRCC [256]. This agent can suppress the cMET signaling pathway and 
the duration of target inhibition is dose related. The authors have suggested that savolitinib 
could have therapeutic potential in sunitinib-resistant pRCC patients [257]. Temsirolimus is 
an mTOR inhibitor and is used in RCC patients with poor prognosis [211]. mTOR inhibitors 
such as temsirolimus and everolimus might overcome HGF-dependent resistance to EGFR-
TKIs in preclinical studies [258]. Microphthalmia transcription factor (MITF)-associated (MiT) 
tumors are a family of rare malignancies, including translocation-associated renal cell carci-
noma (tRCC) that show dysregulation in MITF family proteins. The cMET gene is transcrip-
tionally activated by MITF family proteins which provides a rationale for the use of cMET 
inhibitors in this setting. A small study investigated the activity of tivantinib in patients with 
MiT-associated RCC patients (n = 6) with modest antitumor activity [259].

Simultaneous blocking of cMET and VEGFR pathways represents a promising treatment 
approach for RCC treatment since this will target multiple pathways involved in angiogen-
esis, tumor survival, and metastasis.

2.6.3 Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy and the 
fourth leading cause of cancer-related death in developed countries [260]. In the metastatic 
setting, cytostatic drugs in different combinations are the gold standard, while no targeted 
therapy is being used in clinical practice. The chemotherapy choices include gemcitabine as 
monotherapy, gemcitabine in combinations with nab-paclitaxel or the combination of 5-FU, 
leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) or recently nanoliposomal irinote-
can [261,262]. The expression of cMET and HGF is increased in >70% and >35% of PDAC 
patients, respectively [248]. cMET overexpression correlates with worse clinical outcome of 
PDAC patients (worse TNM stage, presence of lymph node invasion, poor tumor differentia-
tion) [172,263,264]. Zhang et al. [265] developed a novel c-MET CTC assay for detecting cMET 



 2.6 TARGETING HGF–CMET PATHWAY IN sOlID TuMORs TO OvERCOME DRuG REsIsTANCE 45

  

CTCs in patients with cMET amplifications. HGF–cMET overexpression causes chemoresis-
tance by different mechanisms of action. PDAC stroma is the predominant source of HGF 
with a subsequent increase in VEGF production by stromal cells [266,267]. Interestingly, some 
preclinical studies have demonstrated that overexpression of cMET is correlated with EMT-
like changes in PDAC cells with acquired resistance to gemcitabine [236]. Pancreatic stellate 
cells (PSCs) are cells that produce the PDAC stroma. They secrete HGF and promote cancer 
cell growth but do not express the cMET receptor which is present in cancer cells. Pothula 
et al. [268] evaluated the effect of HGF inhibition, using a neutralizing antibody AMG102, in 
monotherapy or in combination with gemcitabine in vitro (PDAC cells) and in vivo (ortho-
topic model). The authors concluded that HGF inhibition was as effective as standard che-
motherapy with gemcitabine at inhibiting local tumor growth. Moreover, HGF inhibition 
reduced metastasis, although this antimetastatic effect was lost when combined with gem-
citabine. Therefore, carefully combining HGF inhibitors with existing treatment modalities 
is warranted [268]. Additionally, cMET as a marker of pancreatic CSCs was associated with 
PDAC aggressiveness, metastatic behavior, and intrinsic resistance to chemotherapy [269]. 
Avan et al. [270] evaluated the synergism of gemcitabine and crizotinib in an orthotopic 
mouse model of primary PDAC. Crizotinib prolonged survival and promoted gemcitabine 
uptake, accompanied by an increased activity of the human equilibrative and concentrative 
nucleoside transporters (hENT1 and hCNT1), and a decreased cytidine deaminase (CDA). 
Interestingly, crizotinib targets CSC-like subpopulations, interferes with cell proliferation and 
cell survival, decreases cell migration, and synergistically interacts with gemcitabine [271]. 
Similar results were obtained with cabozantinib which targets pancreatic CSCs and increases 
the cytotoxic effect of gemcitabine in a human pancreatic cancer model grown orthotopi-
cally in NOD SCID mice [264]. Hage et al. [272] demonstrated that cabozantinib interferes 
with PDAC cell survival and increased the efficacy of gemcitabine in high-gemcitabine-resis-
tant PDAC, suggesting a capacity to overcome gemcitabine resistance. Brandes et al. [273] 
evaluated the efficacy of INC280 (cMET inhibitor) in vitro and in vivo. The combination of 
gemcitabine with INC280 significantly prolonged survival in an orthotopic syngeneic tumor 
model and, therefore, this combination warrants further clinical evaluation.

Previous studies have shown that HGF must dimerize to activate cMET. Small-molecule 
antagonists with homology to a “hinge” region within the putative dimerization domain of 
HGF have been developed that bind to HGF and block dimerization with subsequent inhibi-
tion of cMET signaling. Apart from cMET signaling, which leads to cancer progression, the 
MSP/Ron (MSP receptor) systems characterized by structural and sequence homology have 
the same role in PDAC cells. Church et al. [274] hypothesized that the inhibition of HGF by the 
hinge analogs may be extended to MSP, resulting in more efficient blocking of tumor progres-
sion. As expected, hinge analog compounds inhibited HGF and MSP activity and resulted in 
decreased cMET and Ron activation which may represent a new therapeutic approach for the 
treatment of metastatic PDAC [274].

2.6.4 Colorectal Cancer

Only about 2% of metastatic CRC tumors show cMET amplification [275,276]. cMET 
amplification in CRC is correlated with increased aggressiveness and worse clinical prog-
nosis. Moreover, Bardelli et al. [277] showed that cMET amplification is associated with 
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acquired resistance in CRC patients that do not develop KRAS mutations during anti-EGFR 
therapy. His functional studies demonstrated that cMET activation confers resistance to anti-
EGFR therapy both in vitro and in vivo. Interestingly, cMET amplifications were present in 
circulating tumor DNA before clinically evident radiologic relapse was observed [277]. The 
efficacies of several agents targeting the HGF–cMET signaling pathway have been investi-
gated in preclinical studies or clinical trials in metastatic CRC patients, as, e.g., NK4. NK4 is 
an HGF antagonist that binds to cMET and inhibits HGF-induced tyrosine phosphorylation 
of the receptor [278]. Wen et al. [278] demonstrated that NK4 has inhibitory effects on angio-
genesis in CRC cells. In a randomized phase II clinical trial, the combination of rilotumumab 
with panitumumab in previously pretreated patients with wild-type KRAS metastatic CRC 
was evaluated. This combination led to a higher response rate and showed a trend for a bet-
ter outcome in the population with cMET overexpression [279]. Recently, Bendell et al. [198] 
published the results of a phase II randomized trial exploring the efficacy of cMET inhibi-
tor onartuzumab in combination with FOLFOX and bevacizumab. The addition of onartu-
zumab to the standard first-line treatment did not significantly improve efficacy outcomes. 
Further, cMET expression by immunohistochemistry was not predictive in this setting [198]. 
Lastly, a phase II randomized study of biweekly CETIRI (cetuximab and irinotecan) plus 
tivantinib or placebo was restricted to patients who had received only one prior line of che-
motherapy and were characterized by wild-type KRAS. Subgroup analyses showed a trend 
in favor of tivantinib in patients with cMET overexpressing tumors, with low expression of 
PTEN, or with those pretreated with oxaliplatin, though the subgroups were too small [203].

2.7 BIOMARKERS FOR HGF/MET INHIBITORS

Nowadays, personalized cancer treatment for every patient is an important aim of clinical 
oncologists. As the efficacy of anticancer treatment is always reserved to a certain group of 
patients, it is important to identify biomarkers that could predict response or resistance to a 
specific class of agents, including HGF/cMET inhibitors. Several predictive biomarkers of 
HGF/cMET inhibitors have been investigated.

Circulating HGF and cMET were evaluated as pharmacodynamic biomarkers of cMET inhi-
bition in different clinical trials, although the results have been inconclusive and it seems that 
their potential as predictive biomarkers of response depends on the type of cMET inhibition 
[280–286]. cMET protein expression might be prognostic of clinical outcome in selected cancer 
types with specific molecular aberrations. Some authors have demonstrated that in certain 
cancer types, overexpression of cMET protein, as determined by immunohistochemistry, may 
be associated with poor prognosis. Iveson et al. evaluated the subgroup of cMET-overexpress-
ing gastric tumors treated with a chemotherapy regimen containing epirubicin, cisplatin, and 
capecitabine with or without rilotumumab. In this phase II study, cMET overexpression was 
correlated with better clinical outcome in the patients treated with rilotumumab [287]. These 
results were not confirmed in the phase III RILOMET-1 study [288]. In another study exploring 
the role of tivantinib in NSCLC, it was shown that overexpression of cMET might have predic-
tive potential only in cMET-positive patients with nonsquamous histology [289]. Amplification 
of the cMET gene locus with overexpression of the receptor on the cell surface or cMET gene 
mutations might activate the HGF–cMET signaling pathway. cMET gene amplification, copy 
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number, and mutations appear to be relatively conservative biomarkers, though they are rare. 
High levels of cMET amplification correlated with responsiveness to crizotinib in esophago-
gastric adenocarcinoma patients [290]. Germline cMET mutations were predictive of clinical 
response in pRCC [255]. Interestingly, some authors analyzed changes in cMET phosphory-
lation before and after treatment with several anti-cMET drugs, although it remains unclear 
whether changes in these markers are predictive of clinical responses [291–293].

2.8 CONCLUSIONS AND FUTURE DIRECTIONS

With over 25 years since its first discovery, the cMET receptor is emerging as an important 
target for personalized cancer therapy. cMET is a unique RTK, expressed in the epithelial 
cells of many organs during embryogenesis and in adulthood, with a versatile role in control 
and regulation of several biological functions in response to HGF. In addition to its impor-
tance in normal physiology, a wide variety of human malignancies have sustained cMET 
stimulation, overexpression, or genetic aberrations, including lung cancer, as well as upper 
gastrointestinal cancers such as pancreatic, gastric, and hepatocellular cancers. This aberrant 
activation of the cMET/HGF signaling pathway is associated with tumor development, pro-
gression and aggressive phenotype, and poor clinical outcome.

As summarized in this review, a variety of different strategies to inhibit this signaling 
pathway have been developed, and several cMET inhibitors are now under clinical investiga-
tion in different tumors, with encouraging results. Crizotinib has been approved for ALK-
rearranged NSCLC, while cabozantinib is approved for the treatment of metastatic medullary 
thyroid cancer and for second-line therapy for metastatic RCC. However, the clinical effi-
cacy of several other cMET inhibitors needs to be ultimately validated in ongoing phase II 
and III randomized trials. Moreover, recent studies suggested the potential role of crizotinib 
and other cMET TKIs for the treatment of selected upper gastrointestinal cancers, including 
gastric cancers with cMET amplification and pancreatic tumors, where the HGF–cMET axis 
plays a pivotal role in progression and invasive growth.

Several important questions remain to be answered. Most clinical studies testing anti-
cMET agents have been conducted in combination with other anticancer drugs, such as erlo-
tinib in the context of mutated or wild-type EGFR NSCLC patients, as a means of overcoming 
acquired EGFR-TKI resistance. Further preclinical and clinical studies to evaluate a possible 
role for cMET monotherapy and for combination with other agents are warranted. Knowledge 
gained from these studies should be complemented with molecular and biochemical studies 
on the function of cMET and related pathways in response to cMET inhibition, as well as 
studies on the acquired resistance to this treatment. Finally, identification and selection of the 
optimal patient populations that will benefit from treatment would provide valuable direc-
tion and innovative strategies for the clinical development of cMET targeted therapies.
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