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Abstract
The Hippo pathway plays an essential role in tumorigenesis, stem-cell self-renewal and differentiation, organ 
size control, and many other biological processes. Currently, increasing studies also suggest that the com-
ponents of the Hippo pathway are involved in the sensitivities of different cancer types to various chemo-
therapies. As a major approach for cancer treatments, chemotherapeutic therapies can sometimes effectively 
suppress tumor growth in cancer patients. However, a significant proportion of patients are either intrinsically 
resistant or later develop acquired resistance to primary chemotherapy, leading to disease relapse and patient 
mortality. The best way to conquer this resistance is through a better understanding of the molecular networks 
that are activated in cancer cells in response to drugs. Therefore, identification of signaling pathways and mol-
ecules involved in drug resistance is essential for successful treatment of cancers. Here, we will discuss the spe-
cific roles of the Hippo pathway in chemotherapy, potential applications for studying this network in response 
to drugs, and the future strategies to increase chemotherapy efficiency through targeting the Hippo pathway.

ABBREVIATIONS

AC Adenylate cyclase
AMPK 5' AMP-activated protein kinase
BC Breast cancer
CDK Cyclin-dependent kinase
CSC Cancer stem cell
ER Estrogen receptor
Ex Expanded
5-FU 5-Fluorouracil
GPCR G protein-coupled receptor
HCC Hepatocellular carcinoma
Hpo Hippo
LIFR Leukemia inhibitory factor receptor
LKB1 Liver kinase B1
Lats Large tumor suppressor
Mats Mob as tumor suppressor
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8.1 INTRODUCTION

8.1.1 The Hippo Signaling Pathway

8.1.1.1 Canonical Core Cascade of the Hippo Pathway
The Hippo pathway, which was first identified in Drosophila and later in mammals [1], 

is a recently discovered signaling pathway that plays essential roles in both physiological 
and pathological processes, such as organ size control, tissue regeneration, stem-cell renewal 
and differentiation, and tumorigenesis [1–9]. The core components of the Hippo pathway 
were first identified in Drosophila (Fig. 8.1) with the development of a new technique called 
the mosaic genetic screen [10]. The first player of the Hippo pathway detected through this 
screening was the tumor suppressor and serine/threonine (S/T) kinase named lats (large tu-
mor suppressor) or wts (Warts) [11,12]. Loss of lats/wts causes cell overproliferation and tissue 
overgrowth [11,12]. Using a similar genetic screen, the S/T kinase Hpo (Hippo) was identified 
with similar functions and as an upstream regulator of lats/wts [13–15]. At the same time, scaf-
fold protein Sav (Salvador) was found to promote the functions of Hpo [13] and 2 years later, 
Mats (Mob as tumor suppressor) was identified as another scaffold protein interacting and 
potentiating the functions of lats/Wts [16,17]. All these proteins were found to work together 
as a size-control phosphorylation cascade to regulate the downstream effector Yki (Yorkie), 
which is a transcriptional co-activator [18,19] (Fig. 8.1).

With increasing studies later on, the Hippo pathway was identified and found to be well 
conserved in mammals. In the mammalian Hippo pathway (Fig. 8.1), the core components 
are as follows: kinases MST1/2 (Mammalian Ste-20-like kinase 1/2; homolog of Drosophila 
Hpo; MST will be used instead of MST1/2 in the following text) and LATS1/2 (homolog of 
Drosophila lats/Warts; LATS will be used for LATS1/2 in the following text), scaffold proteins 
WW45/Sav (homolog of Sav in Drosophila) and Mob1 (homolog of Drosophila Mats), as well 
as the transcriptional co-activators YAP (Yes-associated protein; homolog of Drosophila Yki) 
and its paralog TAZ (transcriptional co-activator with PDZ-binding motif) [6,20]. Similar to 
Drosophila Hippo signaling, the mammalian Hippo pathway functions through phosphoryla-
tion. When the Hippo pathway is activated in certain conditions such as increased cell–cell 
contact caused by high cell density, the upstream core component MST first gets phosphor-
ylated and activated, which further phosphorylates and activates the downstream kinase 

MDR Multi-drug resistance
MST1/2 Mammalian Ste-20 like kinase ½
NF2 Neurofibromatosis 2
NSCLC Non-small cell lung cancer
PKA Protein kinase A
PKB Protein kinase B
PKC Protein kinase C
RASSF1A Ras-associated domain family member 1A
SMDs Small molecular drugs
TEAD Transcriptional enhancer associated domain
UPS Ubiquitin proteasome system
VP Verteporfin
YKI Yorkie
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LATS [1,6]. The phosphorylated LATS can inhibit the transactivating functions of YAP and 
TAZ through phosphorylation of specific S sites in the motif of “HxH/R/KxxS/T” (H, histi-
dine; R, arginine; K, lysine) on YAP and TAZ [21–23]. As a result, TAZ and YAP are anchored 
in the cytoplasm [21–23] and/or degraded [24,25], which interrupt their interactions with the 
transcription factor TEAD (transcriptional enhancer associate domain) family to block their 
roles in assisting the transcription of downstream target genes involved in cell-cycle progres-
sion, cell proliferation, and anti-apoptosis (Fig. 8.1) [21,23–27]. Therefore, dysregulation of the 
Hippo pathway is involved in tumorigenesis and metastasis [28–31], which mainly depend 
on cell proliferation and cell survival.

8.1.1.2 Upstream Regulators of the Hippo Pathway
With increasing studies on the Hippo pathway, many regulators of the Hippo pathway have 

been identified in addition to the core components. Studies on Drosophila determined that a 
protein complex consisting of the FERM domain proteins Merlin (NF2, neurofibromatosis 2) 
and Ex (Expanded) as well as Kibra (kidney and brain expressed protein) activate Hippo/MST 
[32–34]. A conserved association of Merlin and Kibra exists in human cells to trigger activation 
of the Hippo pathway via activation of MST [34] (Fig. 8.1). However, unlike Ex in Drosophila, 

FIG. 8.1 Hippo pathway in Drosophila and mammals. Abbreviations: Ex, expanded; Sav, Salvador; Hpo, Hippo; 
Wts, Warts; Yki, Yorki; MST, mammalian Ste-20 like kinase; LATS, large tumor suppressor; hEx, human expanded; 
RASSF1, Ras-association domain family member 1; PKA, protein kinase A; LKB, liver kinase B.
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hEx (human Expanded), which is also named FRDM6 and Willin, functions as a tumor suppres-
sor gene (TSG) in both Hippo pathway-dependent and -independent mechanisms [35,36]. In 
addition to forming a complex with Kibra, Merlin is also shown to recruit MST and LATS to 
the plasma membrane to activate the pathway [37]. In addition, AMOTL2, which is a member 
of AMOT (angiomotin) family, functions as an adapter protein to interact with MST, LATS2, 
and YAP to promote the activation of LATS2 by MST [38]. Besides, the apicobasal polarity of 
epithelial cells also plays a role in the activation of the Hippo pathway through basolateral 
membrane-located protein Scribble, which is required for recruiting MST to the LATS-TAZ/
YAP complex [39]. Furthermore, leukemia-inhibitory factor receptor inhibits YAP-promoted 
metastasis through Scribble involved Hippo pathway activation [40]. In addition, as a tumor 
suppressor, RASSF1A (Ras-association domain family member 1A) interacts with MST1 to 
induce apoptosis [41]. Further studies indicate that this protein can protect activated MST 
from dephosphorylation/inactivation to trigger the Hippo pathway [42,43]. Furthermore, the 
STE-20 family kinase TAO1, PKA (protein kinase A), and LKB1 (liver kinase B1) can activate 
the Hippo pathway through phosphorylation of MST and/or LATS (Fig. 8.1) [44–48].

In addition to the positive regulators, kinase Akt [also known as PKB (protein kinase B)] 
has been shown to inhibit the Hippo pathway through phosphorylation of MST [49,50]. In 
addition, the proteins of Ajuba Lim family can interact with and inhibit LATS activity to block 
the Hippo pathway [51–53]. Moreover, LATS can be specifically targeted by Itch ubiquitin 
ligase to be degraded through ubiquitin proteasome system [54], which also suppresses the 
activity of the Hippo pathway.

Besides, as a cell-surface glycoprotein and a marker for cancer stem cells (CSCs), CD44 
is found to attenuate the activity of the Hippo pathway through association with Merlin in 
glioblastoma cells [55–57]. Further, CD44 can also directly activate YAP independent of the 
Hippo pathway [58]. In addition to CD44, several recent studies propose that some extracel-
lular ligands can regulate the Hippo pathway through different G protein-coupled receptors 
(GPCRs) [2,59–61]. Moreover, a variety of stimuli (e.g., increasing cell density, DNA damage, 
energy stress, mechanotransduction, etc.) activate or inhibit the Hippo pathway [2,62–67].

8.1.2 Hippo Signaling in Human Cancer

The Hippo pathway is a tumor suppressor pathway. Dysregulation of the Hippo pathway 
is involved in tumorigenesis and metastasis [1,2,40]. Evidence of the involvement of the Hip-
po pathway in tumorigenesis comes from the mouse models with gene knockout of upstream 
components in the Hippo pathway. These mice develop variable types of tumors. For exam-
ple, LATS1 knockout mice develop soft tissue sarcoma and ovarian carcinoma [68], whereas 
MST1/2 knockout mice exhibit several types of tumors including hepatocellular carcinoma 
(HCC) [69], which is the same as mice with YAP overexpression in livers [18]. Moreover, the 
core components in the Hippo pathway are clinically involved in diverse human cancers. For 
example, YAP and/or TAZ overexpressions are identified in tumor tissues from patients with 
breast cancer (BC) [31,70,71], non-small-cell lung cancer (NSCLC) [72,73], HCC [74], colorec-
tal cancer [75,76], head and neck cancer [77,78], oral squamous cell carcinoma [79,80], ovarian 
cancer [81–85], prostate cancer [86], and so on. On the other hand, downregulation of LATS is 
detected in BC [87] and NSCLC [88,89].
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8.2 HIPPO PATHWAY IN CHEMOTHERAPEUTIC DRUG RESISTANCE

Abnormal expression levels and dysfunctions of components in the Hippo pathway have 
been implicated in the resistance of cells to different chemotherapeutic drugs and we will dis-
cuss how each component of the core Hippo pathway is involved in chemoresistance during 
cancer treatment in the following text.

MST

MST1 and its homolog MST2 are located upstream of the core Hippo pathway to control 
the activity of this pathway (Fig. 8.1). Downregulation of MST causes resistance of prostate 
cancer cells to the DNA-damaging reagent cisplatin, whereas increasing levels of MST sensi-
tize these cells to cisplatin [90]. However, how reduced MST contributes to cisplatin resistance 
is not clear. One possibility is that decreased MST may cause drug resistance by inactivating 
the Hippo pathway, which subsequently activates its downstream targets YAP and/or TAZ 
(see below).

LATS

As the core kinases in the Hippo pathway, LATS1 and its homolog LATS2 are well-
known TSGs and loss of their functions is found in various human cancers [91]. We have 
previously shown that knockdown of LATS1 by small interference RNAs can dramatically 
decrease the sensitivity of HeLa cervical cancer cells to Taxol, an antimicrotubule drug com-
monly used for treatment of breast and lung cancers [92]. In addition, LATS1 has been 
identified as a gene causing Taxol resistance through a functional genomic screen using 
short-hairpin RNA (shRNA) library targeting TSGs in the lung cancer cell line A549 [93]. In 
addition, knockdown of ITCH, which is a ubiquitin ligase causing LATS1 degradation [54], 
increases cell sensitivity to doxorubicin [94]. This suggests that ITCH may play a role in the 
chemosensitivity of cells through regulation of LATS1. However, the molecular mechanism 
of how LATS1 is involved in chemoresistance remains unknown. Similar to LATS1, LATS2 
is found to be negatively regulated in leukemia and the low level of LATS2 contributes to 
the resistance of leukemic cells to the DNA-damaging agents doxorubicin and etoposide 
(standard drugs for leukemia treatment) [95]. In addition, silencing of LATS2 can upregu-
late the transcription of ERα (estrogen receptor alpha)-regulated genes, which may render 
patients with ER+ BC resistant to Tamoxifen and other ER antagonists [96]. In contrast to the 
above studies, by examination of LATS2 mRNA levels in tissues from chemotherapy-treated 
patients, one study found that BC patients with low levels of LATS2 mRNA are more sensi-
tive to epirubicin plus cyclophophamide (EC). A potential explanation for these conflicting 
findings is that EC treatment functions most effectively in cancer cells that are in S phase of 
replication. LATS2 can inhibit CDK2 function, indirectly preventing cells from entering S 
phase and being targeted by EC efficiently [97]. These results suggest that a gene may func-
tion differently in response to different types of drugs. Therefore, it is necessary to consider 
the mechanisms of action for different drug treatments when studying the role of LATS2 in 
chemotherapeutic drug resistance.
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YAP

YAP was identified in 1994 as a protein interacting with Yes and Src tyrosine kinases 
[98]. Later studies indicated that YAP functions as a transcriptional co-activator and an 
oncoprotein by interacting with many transcription factors and initiating the expression of 
downstream oncogenic genes [27,28,99]. In 2007, YAP was identified as a major downstream 
component of the Hippo pathway. The regulation of YAP by LATS in the Hippo pathway 
determines its subcellular location, which further affects its oncogenic functions through 
transactivation of a variety of genes involved in anti-apoptosis and cell proliferation 
[21,22,24].

The expression of YAP is associated with resistance to various chemotherapeutic drugs 
confirmed in several studies. Upregulation of YAP causes resistance of mammary and ovar-
ian cancer cells to the chemotherapeutic drugs Taxol and cisplatin [30,81,82,85]. Besides, YAP 
is found de-acetylated by SIRT1 and translocated into the nucleus in HCC during cisplatin 
treatment, which leads to cisplatin resistance in HCC [100]. YAP nuclear translocation in-
duced by hypoxia in HCC also causes cells to become less sensitive to sorafenib, a first-line 
treatment drug for HCC [101]. HCC with high levels of YAP expression are also resistant 
to doxorubicin [102]. Besides, overexpression of YAP mediates the resistance of senescent 
cells to doxorubicin through upregulation of the anti-apoptotic protein survivin [103]. Ad-
ditionally, high levels of nuclear-localized YAP has been found in colon cancer cells that are 
resistant to antimetabolite 5-flurouracil as well as castration-resistant prostate tumor samples 
[104,105]. Moreover, YAP also mediates the resistance of BRAF mutant cancer cells to either 
BRAF inhibitor vemurafenib or MEK inhibitor trametinib through upregulation of the down-
stream anti-apoptotic protein BCL-XL [106]. However, YAP also transcriptionally upregulates 
RAS genes through TEAD in NF2-loss thyroid cancers and sensitizes cells to MEK inhibitor 
AZD6244 [107]. In addition, enhanced YAP is associated with the resistance of lung cancer 
cells to EGFR tyrosine kinase inhibitors through upregulation of the downstream target AXL 
and the activation of ERK [108]. Consistently, reduced levels of YAP in various cancer cells 
sensitize these cells to cisplatin and the EGFR inhibitors erlotinib and cetuximab [85,109,110].

The activation of YAP may play a critical role in the resistance of cancer cells to various 
therapeutic drugs. For example, we have recently demonstrated that in response to antitubu-
lin drug treatments, activated CDK1 can negatively regulate YAP by directly phosphorylating 
YAP on five sites with an SP (S, Serine; P, Proline) motif. This phosphorylation can dramatically 
decrease the interaction between YAP and TEAD transcription factor and sensitize cancer cells 
to antimicrotubule drug treatments [111]. Therefore, the identification of the upstream regu-
lators and downstream mediators of YAP during chemotherapeutic drug response may be 
critical to understanding how activation of YAP causes resistance to different drug treatments.

TAZ

TAZ was identified as a 14-3-3 binding protein in 2000 [112]. Further studies have in-
dicated that TAZ is a paralog of YAP in mammals and regulated by the Hippo pathway 
[23]. Therefore, TAZ shares many functions with YAP. TAZ has been identified as an on-
cogene and is involved in the development and metastasis of various types of cancers 
[23,113]. High levels of TAZ are detected in basal-like BC cells and patient tissues [31,70,114]. 
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Overexpression of TAZ causes resistance of mammary cells to Taxol, whereas knockdown 
of TAZ by shRNA in BC cells sensitizes these cells to Taxol [114]. Besides, we also found 
that TAZ can be directly phosphorylated by CDK1, which further causes TAZ degradation 
and therefore reverses TAZ-related cell resistance to antitubulin drugs [115]. Moreover, TAZ 
overexpression in Ras-transformed MCF10A-T1K cells increases multidrug resistance pro-
tein levels and results in cellular resistance to paclitaxel and doxorubicin [39]. Besides, TAZ 
is required for maintaining the properties of breast CSCs and causes resistance of these cells 
to Taxol and doxorubicin [31,39].

Our laboratory provided first evidence that overexpression of TAZ causes resistance of 
mammary cells to Taxol treatment by upregulating its downstream target genes, CTGF and 
Cyr61, through activation of transcription factor TEAD [114]. It has previously been shown 
that Cyr61 reduces chemosensitivity to Taxol by activating an integrin-MAPK pathway [116]. 
Therefore, it is possible that TAZ induces Taxol resistance through a novel TEAD-Cyr61/
CTGF-integrin-MAPK pathway. However, it remains to be explored whether this pathway is 
also important in mediating TAZ-mediated resistance to other drugs.

8.3 TARGETING THE HIPPO PATHWAY FOR CANCER 
CHEMOTHERAPY

As stated above, dysregulation of the Hippo pathway plays important roles in the devel-
opment and progression of a wide variety of human cancers and is critical for their response 
to chemotherapeutic drug treatments. Therefore, targeting the Hippo pathway will be a novel 
strategy for cancer therapy.

8.3.1 Drugs Targeting the Hippo Pathway

Currently, most of the drugs that target the Hippo pathway act by either activating the 
TSGs MST/LATS or inactivating the oncogenes YAP/TAZ directly or indirectly (Table 8.1 
and Fig. 8.2).

8.3.1.1 MST and LATS Activation
Activation of MST or LATS can inhibit cancer cell growth by promoting the phosphoryla-

tion and inactivation of YAP and TAZ (Fig. 8.1). Although no drug has been developed so 
far to directly activate MST/LATS, many drugs have been used to indirectly activate MST/
LATS by modulating its upstream signaling (Table 8.1; Fig. 8.2). For example, since F-actin has 
been shown to inhibit MST/LATS [117,118], inhibition of F-actin polymerization directly [Cy-
tochalasin (Cyt D) and Latrunculin (Lat) A/B] or indirectly through inhibition of upstream 
regulators such as Rho (Botulinum toxin C3) and ROCK (Y27632 or HA1077) can activate the 
Hippo pathway by activating MST/LATS [60,119] (Fig. 8.2). In addition, statins and simv-
astatin can also activate LATS through Rho inhibition by suppressing HMG-CoA reductase 
activity in the mevalonate pathway [120,121]. Moreover, dobutamine or epinephrine, ago-
nists of GPCRs (coupled with Gs), can also activate LATS and the Hippo pathway through 
activation of PKA, whereas QLT0267, an ILK inhibitor, reduces BC cell growth by activating 
MST [122,123] (Fig. 8.2).
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TABLE 8.1 drugs Targeting the Hippo Pathway

Target Drugs Working mechanism References

AMPK  
(5' AMP-activated 
protein kinase)

Metformin, C19 Inhibiting YAP activity by activating 
AMPK

[62–64,134,135]

Cdk1 Taxol Inhibiting YAP/TAZ activity by 
activating Cdk1

[111,115]

F-actin Latrunculin A/B Activating LATS through regulating 
F-actin polymerization

[117]

Cytochalasin D Activating LATS through regulating 
F-actin polymerization

[117,118]

GPCR Dobutamine, 
epnephrine

Activating LATS by regulating its 
upstream regulator GPCR

[59,123]

HMG-CoA reductase, 
Rho

Statins, 
Simvastatin

Activating MST/LATS activity through 
Rho GTPases

[60]

by inhibiting HMG-CoA in the 
mevalonate pathway

[120,121]

ILK QLT0267 Activating MST by inhibiting ILK 
activity

[122]

MST C19 Activating MST [136]

PKA Ibudilast, rolipram Activating LATS by increasing PKA 
activity

[47,59,60]

PKC Auranofin Inhibiting YAP through AMOT by 
inhibiting PKC

[135]

Rho Botulinum toxin 
C3

Activating LATS through inhibition of 
Rho GTP activity

[66,118]

ROCK Y27632,HA1077 Activating LATS though inhibition of 
ROCK

[66,119]

Tankyrase XAV939 Inhibiting YAP activity by activating its 
inhibitor angiomotin

[110]

YAP Super-TDU Peptides inhibiting YAP-TEAD 
interaction

[127]

Cyclic peptides Peptides disrupting YAP-TEAD 
interaction

[125,126]

C108 Promoting YAP degradation Guan Patent

Flufenamic acid Disrupting YAP-TEAD interacting [124]

Verteporfin Disrupt YAP-TEAD interaction [128–130]

TAZ Rottlerin TAZ inhibitor [136]

VEGFR Pazopanib Inhibit YAP/TAZ nuclear localization by 
inhibiting VEGFR and PDGFR

[142]

PDGFR

Yes Dasatinib Activating kinase activity of Yes (YAP/
TAZ activator)

[143]
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8.3.1.2 Inhibition of YAP/TAZ-TEAD Interaction
The YAP/TAZ oncogene is a major output of the Hippo pathway (Fig. 8.1). Since YAP/

TAZ is a transcriptional co-activator with no enzymatic activity, directly inhibiting YAP/TAZ 
is challenging. However, it has been shown that YAP/TAZ causes tumorigenic phenotypes 
through interaction and activation of transcription factor TEAD [27]. Therefore, disruption 
of YAP/TAZ interaction with TEAD to inhibit YAP/TAZ tumorigenic function represents an 
attractive strategy to target the Hippo pathway for cancer therapy [124]. Based on the crys-
tallographic structure of the YAP-TEAD4 complex and using a combination of engineering 
approaches, a series of cyclic peptide mimics have been designed and shown to be able to ef-
fectively block YAP-TEAD interaction [125,126]. In addition, a 48-mer peptide called “Super-
TDU”, which is derived from the sequence of VGLL4 that is critical for inhibition of YAP, was 
also designed and found to specifically disrupt YAP-TEAD interaction [127]. Significantly, 
these peptides were shown to suppress tumor growth both in vitro in cell lines and in vivo 
in a xenograft mouse model. However, since the cost of manufacturing peptide-based com-
pounds is high and peptide-based compounds can be quickly degraded in vivo, it is still chal-
lenging to administer these peptide drugs to cancer patients.

FIG. 8.2 Regulators of the Hippo pathway and relevant drugs targeting the Hippo pathway. Abbreviations: 
GPCR, G protein-coupled receptor; ILK, integrin-linked kinase; PKC, protein kinase C; AC, adenylate cyclase; cAMP, 
cyclic adenosine monophosphate; AMPK, 5′ AMP-activated protein kinase.
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Small molecular drugs (SMDs) are easy to synthesize and relatively stable in vivo. Therefore, 
they are the cost-effective drugs commonly used for targeted therapies. Currently, Vertepor-
fin (VP) is the only SMD that has been shown to directly disrupt the YAP–TEAD interaction. 
In a search for SMDs blocking YAP–TEAD interaction, Pan and colleagues used a YAP–TEAD 
transcriptional activating luciferase reporter to screen a library of 3300 FDA-approved SMDs. 
VP was identified from the screen [128]. VP can directly disrupt YAP-TEAD interaction in 
vitro and in vivo in a dose-dependent manner and inhibit YAP-TEAD transcriptional activa-
tion function. Most significantly, this and later studies showed that VP treatment dramatically 
suppressed the growth of various cancers caused by YAP overexpression in xenograft mouse 
models in vivo [128–130].

8.3.1.3 Targeting Proteins Regulating YAP/TAZ
(1) Kinases: Since direct targeting of YAP/TAZ is difficult, targeting the positive or nega-

tive regulators of YAP/TAZ becomes one of the important strategies targeting the Hippo 
pathway. Since kinases are druggable by SMDs, they are attractive targets for inhibiting YAP/
TAZ activity. Recently, Yes proto-oncogene was found to be crucial for the formation of a 
transcriptional complex including YAP and β-catenin [131]. Interestingly, inhibition of Yes 
by Dasatinib can suppress cancer cell growth by inhibiting YAP–catenin complex function. 
In addition, 5' AMP-activated protein kinase (AMPK) has also been shown to phosphorylate 
YAP and inhibit its function under energy (e.g., glucose) deprivation. Metformin, a drug used 
for the treatment of diabetes, can suppress YAP through activation of AMPK [62–64]. More-
over, we have recently shown that antitubulin drugs such as Taxol can activate Cdk1, which 
subsequently phosphorylates and inactivates YAP/TAZ to induce cancer cell death [111,115]. 
In this case, studies on drugs modulating the activity of Cdk1 could also be used to identify 
drugs that regulate YAP/TAZ functions.

(2) Proteins regulating YAP/TAZ nuclear localization and stability: Since YAP/TAZ func-
tions as a transcriptional co-activator in the nucleus, inhibition of their nuclear localiza-
tion is another strategy for inhibiting YAP/TAZ function. The AMOT family of proteins 
has recently been shown to negatively regulate the oncogenic properties of YAP/TAZ by 
inhibiting its nuclear localization through direct protein–protein interactions [132–134]. 
Therefore, activation of AMOT could be another strategy to inhibit YAP/TAZ in cancer 
(Fig. 8.2). It has been recently reported that XA0939, an inhibitor of tankyrase that can 
cause AMOT degradation through E3 ligase RNF146, can inhibit YAP nuclear localization 
through AMOT [110]. On the other hand, atypical protein kinase C (PKCι)  can directly 
phosphorylate AMOT, whose phosphorylation inhibits YAP1 binding and increases YAP 
nuclear localization. Therefore, treatment of tumor cells with the PKCι inhibitor Aurano-
fin can decrease YAP nuclear localization and tumor growth in vitro and in vivo through 
activation of AMOT [135].

Another way to inhibit YAP/TAZ function is to induce YAP/TAZ protein degradation 
[136]. Recently, C19, a newly identified SMD, was shown to cause TAZ degradation by acti-
vation of GSK3β, a negative regulator of TAZ [137,138]. In addition, in a screen for YAP/TAZ 
inhibitors, the SMD C108 was shown to inhibit YAP/TAZ by promoting their degradation 
(Guan Patent). The molecular mechanism underlying C108-induced YAP/TAZ degradation 
is unclear. However, it is suggested that C108 may be targeting the de-ubiquitinating en-
zymes critical for regulating YAP/TAZ protein stability [139].
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8.3.2 Targeting Hippo Pathways to Improve Response to Chemotherapy

As discussed above, mounting evidence suggests that inactivation of the Hippo pathway 
by upregulating oncoproteins such as YAP/TAZ or downregulating TSGs such as LATS1/2 
or MST1/2 may represent a major event leading to resistance of cancer cells to various che-
motherapeutic drugs. Therefore, activation of the Hippo pathway by activating MST/LATS 
or inactivating YAP/TAZ may sensitize drug-resistant cancer cells to chemotherapeutic drug 
treatments. Since MST/LATS is not druggable, YAP and TAZ are the potential therapeutic 
targets to improve response to chemotherapy.

Many studies have shown that knockdown of YAP or TAZ genetically by RNA interference 
(RNAi) in various cancer cells leads to improved response to a wide variety of chemothera-
peutic drugs including antitubulin drugs (Taxol, vinblastine, etc.), cisplatin, EGFR inhibitors 
(e.g., erlotinib, gefitinib, and cetuximab), c-Abl inhibitor (e.g., imatinib), and RAF and MEK 
inhibitors [106,108,114,140]. One good example of these findings is the manipulation of YAP 
in coping with RAF and MEK inhibitor drug resistance. Although RAF- and MEK-targeted 
therapy has been widely used for the treatment of melanoma and NSCLC, resistance to this 
therapy is a major obstacle for successful treatment. Through a genetic screen, YAP was identi-
fied as a gene-promoting resistance of cancer cells to RAF and MEK inhibitors [106]. Most sig-
nificantly, knockdown of YAP by RNAi in drug-resistant melanoma, colon, and thyroid cells 
caused synthetically lethal with RAF/MEK inhibitor treatment, suggesting that inactivation 
of YAP is an attractive strategy to treat cancers resistant to RAF and MEK inhibitors.

Other studies demonstrate that targeting YAP/TAZ using SMDs may sensitize cancers to 
various chemotherapies. For example, the levels of YAP and TAZ are negatively correlated 
with the sensitivity of cancer cells to Taxol [111,114]. Most significantly, it has recently been 
shown that treatment of Taxol-resistant colon cancer cells with the YAP inhibitor VP reverses 
the resistance to Taxol [141]. In addition, combined treatment of BC cells with the YAP/TAZ in-
hibitors Dasatinib and pazopanib also sensitizes BC cells to both doxorubicin and Taxol [142]. 
Moreover, activation of YAP was found to be responsible for hypoxia-induced resistance of 
HCC to Sorafenib, a multikinase inhibitor [101]. Treatment of drug-resistant HCC cells with VP 
sensitizes these cells to Sorafenib treatment. Similarly, treatment of Sorafenib-resistant HCC 
cells with statins, which inactivate YAP through activation of the Hippo pathway (Fig. 8.2), 
overcomes Sorafenib resistance, leading to improved response to Sorafenib therapy [101].

Interestingly, a screen for genetic markers associated with sensitivity or resistance to SMDs 
revealed a combination of two FDA-approved SMDs, statins and Dasatinib, as an effective co-
treatment strategy to potently inhibit YAP/TAZ in cancer cells [143]. Compared to single drug 
treatment, combined treatment of BC cells with these two drugs significantly sensitized cancer 
cells to Taxol treatment. Therefore, combined treatment of cancer cells with inhibitors targeting 
the Hippo pathway may result in better outcomes in the treatment of drug-resistant cancers.

8.4 CONCLUSION

In conclusion, dysregulation of the Hippo pathway plays important roles not only in tu-
morigenesis, but also in drug resistance. Newly published data strongly suggest that target-
ing the Hippo pathway is a novel and attractive strategy to improve the response of drug-
resistant cancer cells to chemotherapy. Therefore, the development of more SMDs directly 
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targeting the core Hippo components will significantly enhance our ability to treat drug-
resistant cancer patients in the future.
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